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The aim of this study is to investigate the effect of a uniform transverse electric field on the steady-state
behavior of a liquid cylinder surrounded by another liquid of infinite extent. The governing electrohydro-
dynamic equations are solved for Newtonian and immiscible fluids in the framework of leaky-dielectric
theory and in the limit of small electric field and fluid inertia. A detailed analysis of the electrical and
hydrodynamic stresses acting on the interface separating the two fluids is presented, and an expression
is found for the interface deformation for small distortions from a circular shape. The electrical stresses
acting on the interface of two leaky-dielectric liquids are compared with those acting on an interface sep-
arating a perfect dielectric or infinitely conducting core fluid cylinder from a surrounding perfect dielec-
tric fluid. A comparison is made between the results of this study and those of a similar study for fluids
with permeable interfaces and the classical results for liquid drops.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When a droplet of a fluid is suspended in another fluid and is
subjected to an electric field, the mismatch between the dielectric
properties of the fluids results in electrical stresses at the drop sur-
face which may lead to deformation and possible burst of the drop.
Until the seminal work of Taylor (1966), the common perception
was that the fluids are either perfect dielectric (insulator) or infi-
nitely conducting. In either case, the ‘‘electrostatic” theory predicts
that if a perfect dielectric or infinitely conducting drop is sus-
pended in another perfect dielectric liquid, the ‘‘net” electric stres-
ses at the interface will be normal to the interface and will point
from the fluid of higher (permittivity/conductivity) to the one with
lower electric permittivity, and the distribution of these stresses
will be such that the drop shape at the equilibrium will always
be prolate (i.e., an ellipsoid with its major axis parallel to the direc-
tion of the electric field). Since the electrostatic theory precludes
an imbalance in tangential electric stresses, no fluid flow will exist
at steady state. The experiments of Allan and Mason (1962) for a
wide range of fluid systems, however, showed that conducting
drops deformed into prolate spheroids, in agreement with the elec-
trostatic theory, while some perfect dielectric drops deformed to
oblate spheroid (i.e., an ellipsoid with its major axis perpendicular
to the direction of the electric field). Motivated by anomalous
observations of Allan and Mason (1962), Taylor (1966) pointed
ll rights reserved.
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out that the fluids should not be considered perfect dielectrics or
perfect conductors; rather they should be given finite permittivity
and conductivity to allow for the accumulation of the free charge at
the interface. The action of electric field on this charge will then
lead to an imbalance in both normal and tangential stresses, and
therefore, a possibility for oblate deformation. Furthermore, since
the imbalance in the electrical shear stresses must be balanced
by hydrodynamic shear stresses at equilibrium, the hydrodynamic
shear stresses lead to fluid motion inside and outside of the drop.
Since then, the Taylor’s theory has been known as the ‘‘leaky-
dielectric theory”.

Taylor (1966) was able to justify the experimental results of
Allen and Mason qualitatively using his theory by solving the
‘‘electrohydrodynamic” equations in the limit of creeping flow.
However, further experiments by Torza et al. (1971) showed some
discrepancies between the experimental results and the theory. To
improve the theory, Ajayi (1978) extended the Taylor’s linearized
theory to include higher orders terms, and Baygents and Saville
(1989) replaced the leaky-dielectric model by an electrokinetic
model to examine the issue of electrokinetic effects raised by Torza
et al. (1971). These modifications, however, did not lead to drastic
improvement in the drop deformation. This led Vizika and Saville
(1992) to perform new experimental investigations where they
were able, through careful experimental measurements, to obtain
the results that matched the theory more closely. While there is
still some discrepancy, it is now generally believed that the lea-
ky-dielectric theory is the correct ‘‘lumped-parameter” model
when no net charge exists on the drop. See, for example, Feng
and Scott (1996) and Vizika and Saville (1992).

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.008
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Fig. 1. The geometric setup depicting the cross section of a fluid cylinder
surrounded by a pool of another fluid of infinite extension.
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Early interest on the subject stemmed from deformation and
break up of rain drops during thunderstorm (Macky, 1931), and
the effect of deformation of aerosol on optical studies of disperse
systems (O’Konski and Thacher, 1953; O’Konski and Harris,
1957). The interest on the subject grew further because of its po-
tential applications in diverse areas such as nuclear physics (Pelek-
asis et al., 1990), meteorology (Beard et al., 1989), chemical
engineering (Basaran et al., 1989), and materials processing in
microgravity (Carruthers and Testardi, 1983). More recent interest
is directed toward applications involving microfluidic systems
such as atomization of liquid jets by electric field in continuous
inkjet printing (Mutoh, 2002), manipulation of drops in lab-on-a-
chip applications by continuous electrowetting (Zeng and Kors-
meyer, 2004), and design of electrorheological fluids by character-
ization of their rheological response (Ha and Yang, 2000), to name
a few.

The literature on the stability and deformation of a drop due to
exposition to an electric field is rich and the research is still ongo-
ing. Here, we make no attempt to address all the studies, rather we
refer only to a few relevant ones. The review articles by Melcher
and Taylor (1969), Arp et al. (1980) and Saville (1997) present a
summary of the governing electrohydrodynamics laws and their
solution in the context of a planar interface separating two fluids
and/or a suspended drop in quiescent and shear-driven creeping
flows. Instability and deformation of a perfect dielectric/infinitely
conducting drop in a perfect dielectric medium has a long history
and has been extensively studied by analytical and numerical solu-
tions (see, for example, O’Konski and Thacher, 1953, O’Konski and
Harris, 1957, Miksis, 1981, Haywood et al., 1991, and Basaran et al.,
1995). Computations of leaky-dielectric drops are more recent and
Sherwood (1988) was perhaps the first in doing so, who simulated
deformation up to break up of a drop for a wide range of permittiv-
ity and conductivity ratios using a boundary integral method. Fi-
nite Reynolds number effects have been studied by Tsukada et al.
(1993, 1994) and Feng and Scott (1996) using a Galerkin finite ele-
ment technique. The latter offers a comprehensive study of the
deformation of a single drop at steady state as a function of the
controlling parameters of the problem.

In contrast to liquid drops, the behavior of a two-dimensional
filament separating two fluids in electric field is less studied. This
problem finds relevance in a wide range of applications such as
instability of liquid jets or bridges in electric fields, where the axis
of the jet is perpendicular to the direction of the field. An analytical
solution to this problem was found by Rhodes et al. (1989) in the
creeping flow limit and in the context of performance degradation
during separation of colloidal particles in continuous flow electro-
phoresis (CFE). In CFE, a thin stream of dilute colloidal particles is
forced to move coaxially with a buffer fluid through a rectangular
cell, where due to an applied electric field (normal to the jet axis)
the fluid stream is deformed, fractioned, and the fractionated sam-
ple bands are subsequently collected at the exit of the cell. Rhodes
et al. (1989), however, allowed for mass transfer through the inter-
face by considering the normal component of fluid velocity to be
continuous at the interface. Such a boundary condition is an appro-
priate kinematic condition for an interface separating two ‘‘immis-
cible” fluids during the ‘‘transient” period where the interface
deforms and moves with the normal velocity that is the same as
the fluid velocities at both sides, or for an interface separating
two ‘‘miscible” fluids in general. While Rhodes et al. (1989) objec-
tive in using this boundary condition may have been to simply ac-
count for the interface deformation, the fact that the interface
should remain stationary at steady state, implies a solution that
is well-suited for a ‘‘permeable” interface.

The goal of present study is to provide a detailed understanding
of the mechanism of electric field-driven fluid flow and deforma-
tion of a liquid cylinder surrounded by another liquid in a trans-
verse electric field, in the framework of leaky-dielectric theory
and in the limit of small electric field and fluid inertia. Here, the
problem setup is the same as that of Rhodes et al. (1989), however,
the interface is considered to be ‘‘impermeable”. The results of this
study are compared to those for an infinitely conducting or a per-
fect dielectric liquid cylinder surrounded by a perfect dielectric
fluid. Also, a comparison is made between our results and those
of Rhodes et al. (1989) and Taylor (1966) for a fluid drop. The re-
sults of this study may be of practical applications for EHD-driven
instability of liquid jets and continuous flow electrophoresis.

2. Problem setup and nondimensional parameters

Consider a liquid cylinder of radius a surrounded by another li-
quid of infinite extent and exposed to a uniform electric field E1 as
shown in Fig. 1. This geometrical setup can be thought of as a liquid
jet moving coaxially with another liquid in the direction normal to
the plane of the paper. It also resembles a ‘‘two-dimensional” li-
quid drop suspended in another liquid. The physical properties of
the fluids are the densities, qi;qo, the viscosities, li;lo, the electric
permittivities, �i; �o, and the electric conductivities, ri;ro. The sur-
face tension coefficient at the interface of the two fluids is c. Here,
the subscripts i and o are used to identify quantities inside and out-
side of the cylinder. This problem does not have a natural velocity
or time scale. However, a velocity scale can be constructed based
on the fact that the fluid flow results in from a balance of electrical
and hydrodynamic shear stresses at the interface. The electric
shear stress se

rh scales as qsE1; qs being the electric free charge
per unit area, which scales as �E1. This results in se

rh � �E
2
1. The

hydrodynamic shear stress sh
rh scales as lus=a, where us is the

velocity scale. Considering �E2
1 � lus=a leads to the velocity scale

us ¼ �E2
1a=l. Using the physical properties of the ambient fluid

and nondimensionalization leads to the flow Reynolds number
Ref ¼ qoaus=lo, the electric capillary number Cael ¼ lous=c, and
the electric Reynolds number Reel ¼ us�o=roa as the primary
nondimensional numbers of this problem, where us ¼ �oE2

1a=lo.
The ratios of material properties, R ¼ ri=ro; S ¼ �i=�o; k ¼ qi=qo;

g ¼ li=lo, provide a secondary set of nondimensional numbers.
Here, Ref represents the ratio of inertia force to the viscous force,
Reel represents the ratio of time scale of charge relaxation from
the fluid bulk to the surface, ð�=rÞ, to the time scale of charge con-
vection by the flow, ða=usÞ, and Cael represents the ratio of the vis-
cous force over the surface tension.

The key assumption in the leaky-dielectric theory is that the
time scale of charge relaxation time is much less than the time
scale of charge convection, so that the bulk of fluids to be free of
charge. This translates to Reel � 1. Assuming further that the flow
is steady state, the inertial forces are small, Ref � 1, and the
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interface does not deform, Cael � 1, it is possible to solve the elec-
trohydrodynamic equations analytically. To do so, we use cylindri-
cal coordinates as shown in Fig. 1, where h is the polar angle
measured from the field direction in the counterclockwise direc-
tion and r is the radial distance from the origin.
3. Governing equations

Electrohydrodynamic deals with interaction of electric field and
fluid flow. As such, the laws concerning the fluid flow and electric
field and their interplay should be considered. The governing equa-
tions for steady state, incompressible, and creeping flows are the
conservations of mass

r � u ¼ 0; ð1Þ

and momentum

�rpþ lr2uþ Fe ¼ 0; ð2Þ

where u is the fluid velocity, p is the pressure, and Fe is the electric
force per unit area (volume in three dimensions). r2 is the Lapla-
cian operator in polar coordinate acting on a vector.

The electric body force on a fluid has been treated by several
authors, most notably by Landau and Lifhsitz (1960). Briefly, the
electric force is comprised of three components and can be ex-
pressed as

Fe ¼ qvE� 1
2

E � Er�þr q
@�
@q

� �
T

E � E
� �

; ð3Þ

where the first term is the electrophoretic (Coulomb) force, the sec-
ond term is the dielectrophoretic force, and the third term is the
electrostriction force. The electrophoretic force is the result of ac-
tion of the electric field E on the free charges in the fluid bulk qv ,
the dielectrophoretic force stems from the nonuniformity of the
electric permittivity (or the electric field), and the electrostriction
force is the result of variation of the electric permittivity with the
fluid density. As the above equation suggests, the electric force, in
general, is discontinuous across the interface.

The first two terms in Eq. (3) vanish in the fluid bulk for leaky-
dielectric fluids with constant electric properties, since qv ¼ 0 and
r� ¼ 0, respectively. For incompressible flows, on the other hand,
it is possible to group the electrostriction term with the pressure
(see, for example, Smith and Melcher, 1967). Eq. (2), therefore,
can be written as

�rP þ lr2u ¼ 0; ð4Þ

where

P ¼ p� q
@�
@q

� �
T
E � E; ð5Þ

is considered a modified pressure. For nonpolar liquids, the electro-
striction term can be simplified using the Clausius–Mossotti rela-
tion (Stratton, 2007):

q
@�
@q

� �
T
¼ ð�� �0Þð�þ 2�0Þ

3�0
; ð6Þ

where �0 ¼ 8:854� 10�12 F/m is the permittivity of the free space.
For a general dynamic systems, the basic laws of electricity and

magnetism are coupled together and are represented by Maxwell’s
equations (Stratton, 2007). However, in the absence of an external
magnetic field, and for very small dynamic electrical currents, it is
possible to ignore the degree of magnetic induction and to decou-
ple the electric and magnetic field. As was shown by Saville (1997),
this is true for a fairly wide class of problems. Here, the electric
field equations simplify greatly (Melcher and Taylor, 1969; Saville,
1997) and lead to
r� E ¼ 0; ð7Þ
r � ðrEÞ ¼ 0; ð8Þ

and

r � ð�EÞ ¼ qv : ð9Þ

Eq. (7) is the result of Faraday’s law, @B=@t þr� E ¼ 0, where B is
the magnetic field. Since B = 0, consequently, the electric field is
irrotational. Eq. (8) is the result of conservation of electric charge,
Dqv=Dt þr � J ¼ 0, where D/Dt is the material derivative and J is
the free electric current density. J is related to the electric field E
according to the Ohm’s law, J ¼ rE. Since for leaky-dielectric fluids
the electric free charge migrates instantaneously to the interface,
qv ¼ 0 in both fluids. Eq. (9) is the statements of Gauss’s law which
relates the electric displacement D ¼ �E to the free charge. These
equations should be supplemented by proper jump conditions at
the interface. Here, the electric field equations are decoupled from
the momentum equation; i.e., the electric field E can be determined
independent of the momentum equation. However, the momentum
equation is coupled to the electric field equations in the fluid bulk
and at the interface.

3.1. Electric field equations

Since the electric field is irrotational, it is possible to define an
electric potential

E ¼ �r/; ð10Þ

where r ¼ ð@=@rÞer þ ð1=rÞð@=@hÞeh. For fluids with constant elec-
tric properties, Eq. (8) simplifies to r � E ¼ 0 in the fluids bulk. Sub-
stitution for E in terms of / in this equation results in

r2/ ¼ 0; ð11Þ

where r2 ¼ ð1=rÞ½@=@rðr@=@rÞ� þ ð1=r2Þð@2=@h2Þ is the Laplacian
operator acting on a scalar in cylindrical coordinates.

3.2. Streamfunction formulation

Rather than solving the momentum and continuity equation, it
is more convenient to develop an equation for streamfunction. This
is done by taking curl of Eq. (4) and considering the fact that the
curl of a gradient is zero and the curl of the velocity is the vorticity.
This results in r2

x ¼ 0 where x is the vorticity. For two-dimen-
sional flows, x has only one nonzero component; i.e.,
xz ¼ ð1=rÞ½@ðruhÞ=@r� � ð1=rÞð@ur=@hÞ;xr ¼ xh ¼ 0. Therefore, the
vorticity equation can be written as r2x ¼ 0, where x � xz. In
cylindrical coordinates, the components of velocity in radial and
tangential direction are related to the streamfunction w by
ur ¼ �ð1=rÞð@w=@hÞ and uh ¼ @w=@r, where the streamfunction
automatically satisfies the mass conservation equation. Substitu-
tion for ur and uh in terms of w in the expression for xz results in
r2w ¼ �x. Taking the Laplacian of this equation leads to
r2ðr2wÞ ¼ �r2x, and considering the fact that r2x ¼ 0, leads to

r4w ¼ 0; ð12Þ

where r4 ¼ r2ðr2Þ is the biharmonic operator. Eq. (12) satisfies
both the continuity and the momentum equation. Therefore, using
the streamfunction formulation it was possible to reduce the num-
ber of equations, however, the penalty is to solve a higher order dif-
ferential equation.

4. Solution of electric potential equation

Eq. (11) must be solved for the electric field inside and outside
of the cylinder subject to proper boundary and jump conditions. It
is insightful to express the jump conditions in a tangent-normal
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coordinate system and to customize the resulting expressions to
other coordinates afterwards. Doing so, the jump conditions are
valid for a general interface in any coordinate system. In this coor-
dinate system, E ¼ Ettþ Enn, where Et ¼ @/=@t and En ¼ @/=@n,
and t and n are the unit vectors tangent and normal to the inter-
face, respectively. The following boundary conditions apply:

(i) The electric potential should remain finite inside the cylinder:
/ið0; hÞ should be bounded:
(ii) The electric potential across the interface should be contin-
uous. This can be proved using a two-dimensional pillbox
system spanning a portion of the interface and application
of Stokes theorem on Eq. (7),

R
Ar� E ¼

H
CE � tdS ¼ 0, where

dS is the differential arclength along the interface. This
results in Eti

¼ Eto at the interface, which implies
/i ¼ /o at r ¼ a:
(iii) The normal component of electric current density should be
continuous across the interface. This can be proved by con-

sidering a two-dimensional pillbox spanning a portion of
the boundary and application of Gauss theorem on Eq. (8),R

Ar � ðrEÞ ¼
H

CrE � ndS=0. This results in riEni
¼ roEno at

the interface, which implies
ri
@/i

@r
¼ ro

@/o

@r
at r ¼ a;
(iv) The electric potential far away from the cylinder behaves as
/o � rE1 cos h; r !1:
This boundary condition can better be understood from Fig. 1
which suggests that the components of electric field far away
from the cylinder in r and h directions are Er ¼ �E1 cos h and
Eh ¼ þE1 sin h, respectively. This translates to @/=@r ¼ E1 cos h
and ð1=rÞ@/=@h ¼ �E1 sin h as r !1, and integrating any of
these equations with respect to r or h, respectively, leads to the
above boundary condition.

Since Eq. (11) and its boundary conditions are homogeneous,
separation of variables can be used to solve this equation. Taking
/ðr; hÞ ¼ KðrÞHðhÞ, yields d2H=dh2 þ k2H ¼ 0 and r2 d2K=dr2þ
r dK=dr � k2 ¼ 0, where k is a constant to be determined. The solu-
tion of the above ordinary differential equations are
KðrÞ ¼ C01rk þ C02r�k and HðhÞ ¼ C03 cosðkhÞ þ C04 sinðkhÞ. Boundary
condition (iv) suggests that k ¼ 1 and the sinðkhÞ term must be
dropped out of the expression for HðhÞ. Therefore, the electric po-
tential inside the cylinder can be written as /i ¼ ðC1r þ C2r�1Þ cos h,
where C1 ¼ C01C03 and C2 ¼ C02C03 are a new set of constants. Simi-
larly, /o ¼ ðC3r þ C4r�1Þ cos h, where C3 and C4 are another set of
constants. To determine /i and /o, the constants must be evalu-
ated. Boundary condition (i) results in C2 ¼ 0 and boundary condi-
tion (iv) results in C3 ¼ E1. Thus, the solutions for the electric
potential inside and outside the cylinder are /i ¼ C1r cos h and
/o ¼ ðE1r þ C4r�1Þ cos h. To determine C1 and C4, boundary condi-
tions (ii) and (iii) are imposed which results in C1 ¼ 2E1=ð1þ RÞ
and C4 ¼ a2E1ð1� RÞ=ð1þ RÞ, where R ¼ ri=ro. Substitution of
the expressions for C1 and C4 in the final expressions for /i and
/o leads to the final form of the electric potential inside and out-
side the cylinder, respectively,

/i ¼
2E1

1þ R
r cos h ð13Þ

and

/o ¼ E1 r � R� 1
Rþ 1

a2

r

� �
cos h: ð14Þ
4.1. The electric field

The electric field is found using Eqs. (10), (13) and (14), which
yields

Ei ¼ �
2E1

1þ R
cos her þ

2E1
1þ R

sin heh; ð15Þ

and

Eo ¼ �E1 1þ R� 1
Rþ 1

a
r

� �2
� �

cos her þ E1 1� R� 1
Rþ 1

a
r

� �2
� �

sin heh:

ð16Þ

The corresponding expressions for Taylor’s solution are given by
Eqs. (A-1)–(A-4). It is insightful to rewrite Eqs. (15) and (16) in
terms of the unperturbed electric field E1:

Ei ¼
2

Rþ 1
E1 ð17Þ

and

Eo ¼ E1 þ
R� 1
Rþ 1

a2E1 � rr
r4 � E1

a2

r2

� �
; ð18Þ

where r is the position vector measured from the center. Eqs. (17)
and (18) show that the electric field inside the cylinder is uniform
and that the exposition of the cylinder to the electric field results
in a dipole response that decays as 1=r2. It is interesting to note that
Eqs. (13)–(18) can be readily used for perfect dielectric fluids, pro-
vided R ¼ ri=ro is replaced by S ¼ �i=�o.

The distribution of the electric potential at the interface is fun-
damentally important as it determines the strength and distribu-
tion of the free charge and the electric stresses. As is seen from
Eqs. (13) and (14), the ratio of the electric conductivities plays a
major role in this parameter. Fig. 2 shows the contours of electric
potential for conductivity ratios of R ¼ 0:5; R ¼ 10�4, and R ¼ 104

for the current solution (top row) as well as Taylor’s (1996) solu-
tion for the corresponding axisymmetric problem (bottom row).
These conductivity ratios represent, respectively, a fluid cylinder
in an ambient fluid having comparable electric conductivities (sil-
icon oil in corn oil), a perfect dielectric fluid in a perfect conductor
(silicon oil in castor oil+triton), and a perfect conducting fluid cyl-
inder in a perfect dielectric fluid (water in castor oil); see, for
example, Vizika and Saville (1992) for the pertinent electric prop-
erties of these fluids. For R ¼ 0:5, the contours are relatively
straight equispaced horizontal lines which suggests that the elec-
tric potential varies almost linearly in the direction of the field.
For R ¼ 10�4, the contour lines are highly concentrated in the cyl-
inder. Since the normal component of the electric current is contin-
uous, Jni

¼ ri@/i=@n ¼ Jno
¼ ro@/o=@n, and since Jni

� 0 because of
low ri, @/o=@n must tend to zero at the cylinder surface to com-
pensate for high ro. This is indeed the case as is seen by inspection
of the slopes of the electric potential contours in the ambient fluid
near the cylinder surface which are drawn normal to the surface.
For R ¼ 104, electric potential inside the cylinder vanishes and
the cylinder surface becomes a line of equipotential. Here, as op-
posed to R ¼ 10�4, the tangential component of electric field,
Et ¼ @/=@t, is zero at the interface. As such, the contour lines near
the cylinder conform to its shape. Inspection of the results for Tay-
lor’s solution shows a similar trend; however, for R ¼ 10�4 the con-
tours near the cylinder are less perturbed. This is because the
perturbation in the electric potential dies off as 1=r2 in Taylor’s
solution (Eq. (A-2)) compared to 1=r for our solution.

Fig. 3 shows the vectors of the electric field along with a few se-
lected electric field streamlines corresponding to the above cases.
For all the cases, the electric field inside the cylinder is uniform
as suggested by Eq. (17). For R ¼ 0:5, the vectors in the ambient
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Fig. 2. Contours of electric potential for fluid systems with different electric conductivity ratios. The top row shows the contours for R ¼ 0:5; R ¼ 10�4, and R ¼ 104,
respectively, for our solution. The bottom row shows the contours for the corresponding axisymmetric problem.
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fluid are relatively straight vertical lines everywhere; for R ¼ 10�4,
the electric field is stronger inside and the outer streamlines con-
form to the interface. For R ¼ 104, the electric field vanishes inside,
the vectors near the cylinder are normal to the surface, and the
streamlines converge toward the cylinder as they reach equator
and diverge afterward.

4.2. The electric free charge at the interface

Fluids can be classified in terms of electric conductivity r and
the dielectric constant �r ¼ �=�0 as either conductor ðr	 1;
�r ¼ 1Þ, or dielectric (insulator) ðr�1;�rP1Þ;�0¼8:854�10�12 F/m
being the permittivity of the free space. When a fluid is exposed
to an external electric field, it is polarized. In the case of perfect
conductors, the polarization leads to formation of free charges in
the bulk of the fluids and since the electric field in a perfect con-
ductor should be zero according to Ohm’s law, the free charges will
immediately migrate to the fluid boundary. The perfect dielectrics,
on the other hand, do not have free electrons in their outermost
atomic shells. For these fluids, the polarization leads to dipole mo-
ments which align themselves in the direction of the electric field.
The surface charge per unit length qs (area in three dimensions)
can be calculated by integration of Eq. (9) over a two-dimensional
pillbox spanning a portion of the boundary and application of
Gauss’s theorem; i.e.,

R
Ar � ð�EÞdA ¼

R
A qv dA. This results in

qs ¼ �oEno � �iEni
, where qs ¼ limA!0

R
A qv dA and n is the outward

unit vector normal to the interface. Considering that riEni
¼ roEno

at the interface, results in qs ¼ �oEno � �iðro=riÞEno , or

qs ¼ �oEno 1� S
R

� �
: ð19Þ

For the problem in hand, Eno � Ero and evaluation of Ero at the inter-
face from Eq. (16) and substitution of the resulting expression into
this equation yields
qs ¼
2E1�oðS� RÞ

Rþ 1
cos h: ð20Þ

Eq. (20) suggests that the distribution of the free charge on the
interface depends on the strength and direction of the electric field
and the relative magnitude of R and S. Furthermore, the total free
charge is zero as is evident from Eq. (20); i.e.,

H
qsadh ¼ 0. Fig. 4

shows a schematic distribution of the free charge on the interface
for two cases, R < S (the left frame) and R > S (the right frame),
along with the directions of the net electrical stresses acting on
the interface (discussed in Section 4.3). For R < S, the upper half
of the cylinder is induced with positive charges, the same in sign
to the electrode that it faces, while the lower half is covered by neg-
ative charges. The opposite is true for R > S. If the direction of the
electric field is reversed, the distribution of the charges will also
be reversed. R ¼ S represents a perfect dielectric fluid in a perfect
dielectric fluid and, therefore, qs ¼ 0. As will be shown shortly, the
strength and distribution of the free charges have profound effect
on the sense of deformation of the interface and fluid circulations
in the cylinder and in the ambient fluid.

4.3. Electrohydrodynamic stresses

To derive the momentum jump condition needed in solving the
momentum equation, it is necessary to find the stresses associated
with the electric force. This is done by treating the electric force as
divergence of the electric stress tensor; Fe ¼ r � se. Application of
Eqs. (3), (7) and (9) on this relations yields:

se ¼ �EE� 1
2

E � E�Iþ 1
2
q

@�
@q

� �
T

E � EI: ð21Þ

Here, se is the so-called Maxwell stress tensor and I is the identity
tensor. In this study, we use Eq. (4), where we group the electro-
striction term with the pressure term in the momentum equation.
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our solution. The bottom row shows the vectors for the corresponding axisymmetric problem. The solid lines represent electric streamlines at selected levels.
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As such, the Maxwell stress tensor in our formulation is simply
se ¼ �EE� 1

2 �E � EI.
The electric stresses in the radial and tangential direction can be

easily formulated using indicial notation; i.e., se
ij ¼ �EiEj � ð1=2Þ

EkEk�dij, where i and j represents the tangent and normal directions

and dij is the Kronecker delta. This results in se
nn ¼ ð�=2Þ E2

n � E2
t

� �
and se

nt ¼ �EtEn, where we have used E2 ¼ E2
t þ E2

n to simplify se
nn.

For the problem in hand where n � r and t � h, se
rr ¼ ð�=2Þ E2

r�
�

E2
hÞ and se

rh ¼ �ErEh. Substitution for Er and Eh from Eqs. (15) and

(16) in the expressions for se
rr and se

rh results in

se
rro
¼ 1

2
�oE2

1 � 1þ R� 1
Rþ 1

� �2 a
r

� �4
� 2

R� 1
Rþ 1

� �
a
r

� �2
" #(

þ2 1þ R� 1
Rþ 1

� �2 a
r

� �4
" #

cos2 h

)
; ð22Þ
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Fig. 4. A schematic figure depicting the effect of the electric field polarity and the relative
at the interface. For both cases, E1 < 0. For the left frame, R < S, positive charges are ind
negative charges are induced at the lower half which faces the negative electrode. For thi
For the right frame, R > S, and the charge distribution and direction of electric shear str
se
rho
¼ 1

2
�oE2

1
R� 1
Rþ 1

� �2 a
r

� �4
� 1

" #
sin 2h; ð23Þ

se
rri
¼ 2�iE

2
1

ðRþ 1Þ2
ð2 cos2 h� 1Þ; ð24Þ

and

se
rhi
¼ � 2�iE

2
1

ðRþ 1Þ2
sin 2h: ð25Þ

Eqs. (22)–(25) suggest that the electric stresses are independent of
the electric field polarity. The inner stresses are independent of the
radial coordinate, and the perturbation in the radial and tangential
electric stresses in the ambient fluid, as a result of introduction of
the cylinder, die off as 1=r2 and 1=r4, respectively. The maximum
shear and normal stresses (in an absolute sense) at the interface
0 2.5 5
0
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5
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r θ]]

 E∞

magnitude of R ¼ ri=ro and S ¼ �i=�o on the distribution of the free electric charges
uced at the upper half of the cylinder (drop) which faces the positive electrode and
s case, the electric shear stress tends to drive the flow from the poles to the equator.
ess are reversed.
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are at ðh ¼ 
p=4;
3p=4Þ and ðh ¼ 0;p;
p=2Þ, respectively. As will
be shown, the tangential fluid velocity will be maximum where the
shear stress is maximum and the drop deformation tends to be
maximum where the normal stress is maximum.

The key parameters that affect the sense of deformation and
fluid circulation are the net normal and tangential electric traction
forces at the interface; i.e. ½½f e

sn�� ¼ f e
sno
� f e

sni
and ½½f e

st �� ¼ f e
sto
� f e

sti
,

where fsn and fst are the normal and tangential components of
the electric force at the interface, respectively. The traction forces
fe

s at a general surface are related to the surface stresses se
s through

fe
s ¼ se

s � n, where n is the unit normal vector at the interface. In a
t–n coordinate system, however, f e

sn ¼ snn and f e
st ¼ snt . Therefore,

½½f e
sn�� ¼ ½½se

nn�� and ½½f e
st �� ¼ ½½se

tt��. The right hand side of the above
expressions are easily found to be ½½se

nn�� ¼ ð1=2Þ�o E2
no
� E2

to

� �
�

ð1=2Þ�i E2
ni
� E2

ti

� �
and ½½se

nt �� ¼ �oEno Eto � �iEni
Eti

, and considering
the fact that Eti

¼ Eto � Et and roEno ¼ riEni
, results in

½½f e
sn�� ¼ ½½se

nn�� ¼
�o

2
1� S

R2

� �
E2

no
þ ðS� 1ÞE2

t

� �
ð26Þ

and

½½f e
st�� ¼ ½½se

nt �� ¼ �oEno Et 1� S
R

� �
¼ qsEt: ð27Þ

A few interesting observations can be made from the above equa-
tions. For perfect dielectric fluids where R ¼ S, Eq. (26) suggests that
the sign of ½½f e

sn�� depends on the value of S. For S > 1; ½½f e
sn�� > 0 and

the opposite is true for ½½f e
sn�� < 0. This implies that in both cases the

net normal stresses are directed from the fluid of higher electric
permittivity toward the one with lower permittivity, in agreement
with the experiments (see, for example, Vizika and Saville, 1992).
On the other hand, for a perfect conductor in a perfect dielectric
where R!1; Et ¼ 0, and therefore, ½½f e

sn�� ¼ �oE2
no
=2 > 0, which sug-

gests that the force is from the fluid of higher electric conductivity
toward the one with lower conductivity. As will be shown in Section
6, under the above circumstances the interface will always be pro-
late. For leaky-dielectric fluids, however, the sense of deformation
depends on the relative magnitude of R and S. Similarly, Eq. (27)
suggest that for perfect dielectric fluids where R ¼ S, the jump in
tangential electric stresses is zero (as there is no free charge accord-
ing to Eq. (19)). For a perfect conducting fluid cylinder in a perfect
dielectric liquid where R!1, on the other hand, the electric free
charge is not zero. However, the jump in the tangential stresses is
still zero since Et ¼ 0. The net result is that the perfect dielectric/
conductor model precludes the fluid flow as it preclude the imbal-
ance in the tangential electrical forces at the interface. For leaky-
dielectric fluids, the circulation is not zero and depends on the rel-
ative magnitude of R and S.
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Fig. 5. Variations of net normal and shear electric stresses at the in
For the problem in hand where Er � En and Eh � Et , evaluation of
Er and Eh at the interface from Eqs. (15) and (16) and substitution of
the resulting expressions into Eqs. (26) and (27) results in

½½f e
sn�� ¼ ½½se

rr�� ¼
2�oE2

1

ðRþ 1Þ2
½S� 1þ ðR2 þ 1� 2SÞ cos2 h� ð28Þ

and

½½f e
st�� ¼ ½½se

rh�� ¼
2�oE2

1ðS� RÞ
ðRþ 1Þ2

sin 2h: ð29Þ

The net electric stresses for the Rhodes et al. (1989) solution are the
same as (28) and (29), and the corresponding expressions for Tay-
lor’s solution are given by equations (A-10) and (A-11). Fig. 5 de-
picts the variation of the net normal and tangential stresses at the
interface for the three solutions. Here, R ¼ 0:252 and S ¼ 0:82, cor-
responding to a silicon oil drop in corn oil (Table 1). For all the solu-
tions, the net normal stresses are compressive (i.e., ½½f e

sn�� < 0) as the
expression in the bracket is negative. These stresses are maximum
(in an absolute sense) at the poles, where the normal (radial) com-
ponent of the electric field is maximum, and minimum at the equa-
tor, where the normal (radial) component of the electric field
vanishes. See, Eqs. (15) and (16). The net shear stresses are zero
at the poles and the equator, where the tangential component of
the electric field vanishes and the free charge is zero, respectively.
These stresses are maximum at ðh ¼ 
p=4;
3p=4Þ. Here, the direc-
tions of the net normal and shear stresses suggest that the electric
field tends to deform the interface to an oblate shape and to drive
the fluid from the poles to the equator, respectively.
5. Solution of the stream function equation

The velocity field can be found by solving the biharmonic equa-
tion (12) for the fluid inside and outside of the cylinder. To solve
this equation, the following eight boundary conditions are needed:

(i) The velocity field should remain finite inside the cylinder:
−

−0

0

[[t
au

rθ
e ]]/

ε o E
∞2

terface f
uri
ð0; hÞ and uhi

ð0; hÞ should be bounded:
(ii) The no-slip boundary condition at the phase boundary:
uho ¼ uhi
at r ¼ a:
(iii) The no-through flow boundary condition at the phase

boundary:
uroða; hÞ ¼ uri
ða; hÞ ¼ 0:
0 0.2 0.4 0.6 0.8 1
1

.5

0

.5

1

θ/π

Present

Taylor

or R < S, corresponding to silicon oil in corn oil (Table 1).



Table 1
Physical properties of the fluids used. Here, c ¼ 1:45� 10�3 N=m and
�0 ¼ 8:854� 10�12 F=m.

System r ðS=mÞ � ðF=mÞ l ðkg m�1 s�1Þ q ðkg=m3Þ

Silicon oil 2:67� 10�12 2.66�0 0.0167 941
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(iv) The tangential stress balance at the phase boundary:
Corn oil 1:06� 10�11 3.24�0 0.0421 914
Table 2
Solution
respect

Outside

Inside
ðsh
rho
� sh

rhi
Þ þ ðse

rho
� se

rhi
Þ ¼ 0;
where sh
rh ¼ l½r@ðuh=rÞ=@r þ ð1=rÞð@ur=@hÞ� is the hydrodynamic tan-

gential shear stress.

(v) The velocity field vanishes far away from the cylinder:
uro and uho ! 0 as r !1:
Notice that boundary conditions (i), (iii), and (v) each provides two
boundary conditions. Since the differential equation and the bound-
ary conditions are homogeneous, the suggested solution is of the
form wðr; hÞ ¼ KðrÞHðhÞ. The mathematical structure of K and H
can be inferred from the behavior of the velocity field far away from
the cylinder and the tangential stress balance at the interface,
respectively. Far away from the cylinder, the velocity diminishes
which suggests that KðrÞ � rn, and since se

rh � sin 2h, it is concluded
that HðhÞ � sin 2h. Therefore, wðr; hÞ ¼ rn sin 2h, where n is a real
constant to be determined. Substitution for w using the above
expression into Eq. (12) and simplifying yield nðn� 2Þðnþ 2Þ
ðn� 4Þ ¼ 0. The roots of this equation are n ¼ 0; �2; 2, and 4.
Therefore, the equations for streamfunction will be wo ¼ ðAþ Br2þ
Cr�2 þ Dr4Þ sin 2h and wi ¼ ðEþ Fr2 þ Gr�2 þ Hr4Þ sin 2h, where A–H
are constants to be determined. Application of boundary conditions
(i) and (v) results in E ¼ G ¼ 0 and B ¼ D ¼ 0, respectively.
Therefore,

wo ¼ ðAþ Cr�2Þ sin 2h ð30Þ

and

wi ¼ ðFr2 þ Hr4Þ sin 2h: ð31Þ

Boundary conditions (ii), (iii), and (iv) result in, respectively

Ca�4 þ F þ 2Ha2 ¼ 0; ð32Þ

Aa�2 þ Ca�4 ¼ 0; ð33Þ

F þ Ha2 ¼ 0; ð34Þ

and

loð12Ca�4þ4Aa�2Þ�lið4Fþ12Ha2Þ� 2E2
1�o

ð1þRÞ2
ðR�SÞ¼0: ð35Þ

Solution of Eqs. (32)–(34) results in C ¼ �Aa2
; F ¼ �A=a2, and

H ¼ A=a4, and substitution of these coefficients in Eq. (35) results
of streamfunction, velocity, modified pressure, and hydrodynamic stresses from
ively.

wj
sin 2h

urj

cos 2h
uhj

sin 2h
Pj

lj cos 2h

r�2 �2r�3 �2r�3 0
1 �2r�1 0 �4r�2

r2 �2r 2r 0

r4 �2r3 4r3 �12r2
in A ¼ a2�oE2
1ðS� RÞ=½loð1þ gÞ�½4ð1þ RÞ2�. Table 2 presents the

streamfunction and velocity field along with the hydrodynamic
stresses for the flow inside and outside the cylinder. From the solu-
tion of uho given in the table, it is seen that the maximum velocity is

Umax ¼
2A
a
¼ a�oE2

1
loð1þ gÞ

ðS� RÞ
2ð1þ RÞ2

; ð36Þ

which takes place at the interface and at angles ðh ¼ 
p=4;
3p=4Þ.
The constant coefficients in the table can be expressed in terms of
Umax as A¼Umaxa=2;C¼�Umaxa3=2;F¼�Umax=2a, and H ¼ Umax=2a3.
Eq. (36) suggests that the sense of fluid circulation inside and out-
side of the cylinder depends on the relative magnitude of R and S.
Furthermore, since Umax is proportional to E2

1, the sense of fluid
circulation does not depend on the electric field polarity. The
streamfunctions and the velocities of the fluids, expressed in terms
of Umax, are

wo

aUmax
¼ 1

2
1� a

r

� �2
� �

sin 2h;
wi

aUmax
¼ 1

2
r
a

� �4
� r

a

� �2
� �

sin 2h

uro

Umax
¼ a

r

� �3
� a

r

� �
cos 2h;

uho

Umax
¼ a

r

� �3
sin 2h ð37Þ

uri

Umax
¼ r

a
� r

a

� �3
� �

cos 2h;
uhi

Umax
¼ 2

r
a

� �3
� r

a

� �
sin 2h

Similar expressions are presented for the axisymmetric solution in
Eq. (A-13). The formulation of the Rhodes et al. solution in terms
of Umax is involved and is not presented.

The solution just presented differs from the solution of Rhodes
et al. (1989). These authors replaced boundary condition (iii) with
the following boundary conditions:

(iiia) Continuity of the radial velocity at the interface
the p
uro ¼ uri
at r ¼ a
and

(iiib) the balance of radial stresses at the interface
�ðPo � PiÞ þ ðse
rro
� se

rri
Þ þ ðsh

rro
� sh

rri
Þ ¼ 0;
where they assumed the surface tension to be negligible. Consider-
ing a solution of the form wo ¼ ARa4r�2 þ BRa2

� 	
sin 2h and

wi ¼ CRr2 þ DRa�2r4
� 	

sin 2h and applications of boundary condi-
tions (ii), (iii)a, (iii)b, and (iv) lead to

AR ¼
1
3

FR½R2 þ 4Rþ 1� 6S�; BR ¼ FR½4S� ðRþ 1Þ2�;

CR ¼ FR½2S� R2 � 1�; DR ¼
1
3

FRðR� 1Þ2; ð38Þ

FR ¼ �oE2
1=½loð1þ gÞ�½4ð1þ RÞ2�:

Table 3 presents the streamfunction and velocity field along with
hydrodynamic stresses for this solution. A summary of the solution
of the axisymmetric problem by Taylor (1966) is presented in
resent study. Notice that j ¼ i and o, for the inside and the outside fluids,

sh
rrj

lj cos 2h

srhj

lj sin 2h
xj

sin 2h
Coefficient

12r�4 12r�4 0 C

4r�2 4r�2 �4r�2 A

�4 4 0 F

�12r2 12r2 12r2 H



Table 3
Solution of streamfunction, velocity, modified pressure, and hydrodynamic stresses from Rhodes et al. (1989). Notice that j ¼ i and o, for the inside and the outside fluids,
respectively.

wj
sin 2h

urj

cos 2h
uhj

sin 2h
Pj

lj cos 2h
sh

rrj

lj cos 2h

srhj

lj sin 2h
xj

sin 2h
Coefficient

Outside r�2 �2r�3 �2r�3 0 12r�4 12r�4 0 ARa4

1 �2r�1 0 �4r�2 4r�2 4r�2 �4r�2 BRa2

Inside r2 �2r 2r 0 �4 4 0 CR

r4 �2r3 4r3 �12r2 �12r2 12r2 12r2 DRa�2
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Appendix A and Table 4 gives the pertinent information for this
case. Evaluation of uho at ðr ¼ a; h ¼ p=4Þ, using Table 3, results in

UmaxR ¼
a�oE2

1
loð1þ gÞ

6S� ðR2 þ 4Rþ 1Þ
6ð1þ RÞ2

; ð39Þ

as their maximum velocity. As opposed to the present and the axi-
symmetric solution, here the fluid flow does not vanish when the
fluids are perfect dielectrics (i.e., UmaxR –0 for R ¼ S).

Fig. 6 shows a few equispaced streamline contours for the three
solutions corresponding to a fluid system with R ¼ 0:252; S ¼ 0:82,
and g ¼ 0:03967. These nondimensional numbers, for example,
may represent a silicon oil drop of radius a ¼ 25 (mm) suspended
in a corn oil (Table 1) and exposed to an electric field of strength
E1 ¼ 5000 (V/m). For this fluid system, the other nondimensional
numbers are k ¼ 1:0295, Ref ¼ 0:923; Reel ¼ 0:0461, and Cael ¼
0:0247. This fluid system is the same as the one used by Tsukada
et al. (1994) in their experiments. For the present and the Taylor’s
solution, the flow consists of four closed recirculation regions in-
side the cylinder that are matched with the corresponding ones
in the outside. As the separation distances between the streamlines
suggest, the flow is strong near the interface and gets weaker away
from the surface. Here, the flow is from the poles to the equator,
inline with the sign of Umax (Eqs. (36) and (A-12)) and ½½se

rh�� (Eqs.
Table 4
Solution of streamfunction, velocity, hydrodynamic pressure, and hydrodynamic stresses
typographical error in the pressure is incorporated. Notice that j ¼ i and o, for the inside a

wj

sin2 h cos h

urj

1� 3 cos2 h

uhj

sin h cos h
Pj

lð1� 3 cos2

Outside r�2 �r�4 2r�4 0
1 �r�2 0 �2r�3

Inside r3 �r �3r 0

r5 �r3 �5r3 �7r2
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Fig. 6. Streamlines for a silicon oil (inside) in corn oil (outside). Here, R ¼ 0:252; S ¼
frames correspond to our solution (the first frame), Rhodes et al. solution (the middle fram
frame of Fig. 4, the net electric shear stresses drives the fluid from the poles to the equ
(29) and (A-11)). The streamlines, however, cross the interface in
the Rhodes et al. solution. The curvatures of the streamlines seem
to be higher in Taylor’s and Rhodes et al. solution compared to us.
Fig. 7 shows streamlines for a phase-reversed system (i.e., corn oil
drop in silicon oil). For this system, the electric field is adjusted to
1000 V/m, and the resulting nondimensional numbers are R ¼
3:968; S ¼ 1:22; g ¼ 2:5208; k ¼ 0:9713, Cael ¼ 8:12� 10�4; Ref ¼
0:1975, and Reel ¼ 0:0124. Similar observations can be made for
this system as well. The direction of flow here, however, is opposite
to the previous case; i.e., it is from the equator to the poles. The
sense of the circulation in the outer fluid suggests that the fluid
tends to deform the drop to an oblate shape in Fig. 6 and to a pro-
late shape in Fig. 7. However, this is not conclusive as the interface
is under normal electric stresses which may oppose the hydrody-
namic stresses. Fig. 8 compares the vorticity contours correspond-
ing to the first system. For all the solutions, the vorticity in the
outer flow diminishes relatively rapidly.

Fig. 9 shows the variation of nondimensional velocities inside
and outside of the cylinder versus r at h ¼ p=4 for the tangential
components, and at h ¼ 0 for the radial components. These results
are based on the first fluid system shown in Fig. 6, however, they
give a general sense of what to expect. Several observations can
be made from this figure. For all the solutions, uho=Umax is maxi-
mum at the interface and monotonically decreases away from
from Taylor (1966). Notice that the corrections of Melcher and Taylor (1969) in the
nd the outside fluids, respectively.

hÞ
sh

rrj

ljð1� 3 cos2 hÞ

srhj

lj cos h sin h
xj

sin 2h
Coefficient

8r�5 �16r�5 0 AT a4

r�3 �6r�3 �3r�3 �AT a2

�2 �6 0 þAT a�1

�6r2 �16r2 7r2 �AT a�3
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0:82; g ¼ 0:03967; k ¼ 1:0295; Ref ¼ 0:923; Reel ¼ 0:0461, and Cael ¼ 0:0247. The
e), and the Taylor solution (the last frame). Here, R < S, and as indicated in the first

ator.
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Fig. 7. Streamlines for a corn oil (inside) in silicon oil (outside). Here, R ¼ 3:968; S ¼ 1:22; g ¼ 2:5208; k ¼ 0:9713; Ref ¼ 0:1975; Reel ¼ 0:0124, and Cael ¼ 8:12� 10�4. The
frames correspond to our solution (the first frame), Rhodes et al. solution (the middle frame), and the Taylor solution (the last frame). Here, R > S, and as indicated in the
second frame of Fig. 4, the net electric shear stresses drives the fluid from the equator to the poles.
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the interface until it levels off to zero. uho=Umax is the same for
Rhodes et al. and our solution. uro=Umax is zero at the interface, goes
through a maximum (in an absolute sense) at r ¼

ffiffiffi
3
p

a for our solu-
tion and r ¼

ffiffiffi
2
p

a for Taylor’s solution. It gradually decays away
from the interface until it levels off to zero. For Rhodes et al. solu-
tion, this velocity is maximum (in an absolute sense) at the inter-
face and decays gradually away from the interface. uhi

=Umax is zero
at the cylinder center, goes through a minimum at r ¼ a=

ffiffiffi
6
p

for our
solution and r ¼ a=

ffiffiffi
5
p

for Taylor’s solution, and reaches the maxi-
mum at the interface for all the solutions. uhi

=Umax changes sign for
the current and axisymmetric solutions as the inner fluid consists
of closed circulation lines. For Rodes et al. solution, the sign re-
mains the same. The center of the inner vortices can be determined
by finding the place where both uri

and uhi
are zero. This results in

r ¼ a=
ffiffiffi
2
p

and h ¼ 
p=4;
3p=4 for our solution, and r ¼
ffiffiffiffiffiffiffiffi
3=5

p
a

and h ¼ 
0:9553;
2:5261 for Taylor’s solution, respectively. The
locations of the vortices is independent of R and S. The centers of
these vortices can be determined as before, however, they will also
depend on R and S. For the current and Taylor solution, uri

=Umax is
zero at the center and at the interface, it is always positive, and
reaches a maximum at r ¼ a=

ffiffiffi
3
p

for both solutions. On the other
hand, uri

=Umax is not zero at the interface for the Rodes et al. solu-
tion as the mass is allowed to transfer across the boundary.

To shed more light on the nature of the recirculatory motion, we
have also calculated the vorticities

xo

Umax=a
¼ �2

a
r

� �2
sin 2h;

xi

Umax=a
¼ 6

r
a

� �2
sin 2h: ð40Þ

The solutions for Rhodes et al. and Taylor are presented in Tables 3
and 4. These expressions suggest that the interface acts as a vortex
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Fig. 8. Vorticity contours for the fluid system shown in Fig. 6. The frames correspond to o
solution (the last frame).
sheet separating vorticities of opposite signs. Fig. 10 shows the vari-
ations of nondimensional vorticities for the three cases versus the
nondimensional radial distance from the jet (drop) center. The vort-
icies (in an absolute sense) are higher for our solution and Taylor’s
solution compared to those of the corresponding ones for Rhodes
et al. solution.

Finally, the jump in the hydrodynamic traction forces across the
interface are

½½f h
sn�� ¼ ½½sh

rr�� ¼
2�oE2

1ðR� SÞðg� 1Þ
ðgþ 1ÞðRþ 1Þ2

cos 2h ð41Þ

and

½½f h
st�� ¼ ½½sh

rh�� ¼
2�oE2

1ðR� SÞ
ðRþ 1Þ2

sin 2h; ð42Þ

where sh
rr ¼ 2l@ðurÞ=@r. Notice that Eqs. (42) and (29) are of equal

value but opposite sign as is required by the tangential jump
condition.
6. Interface deformation

The analysis so far was based on the premise that the interface
remains circular. However, the interface is likely to deform as a re-
sult of the electric and hydrodynamic stresses. For small deforma-
tion, it is possible to calculate the distortion from circular shape
using normal stress balance at the interface:

�ðPo � PiÞ þ se
rro
� se

rri

� �
þ sh

rro
� sh

rri

� �
¼ cj: ð43Þ
5 0 2.5 5
0

2.5

5

ur solution (the first frame), Rhodes et al. solution (the middle frame), and the Taylor
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top and the bottom frames correspond to the ambient and the inner flow, respectively.
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In the above equation, c is the surface tension coefficient and j is
the local curvature of the interface. To proceed, we need to calculate
the pressure. This is done by writing Eq. (4) in its components
form

@P
@r
¼ l @

@r
1
r
@

@r
ðrurÞ

� �
þ 1

r2

@2ur

@h2 �
2
r2

@uh

@h

" #
ð44Þ

and

1
r
@P
@h
¼ l @

@r
1
r
@

@r
ðruhÞ

� �
þ 1

r2

@2uh

@h2 þ
2
r2

@ur

@h

" #
; ð45Þ

and integration of the above equations with respect to r and h,
respectively. The velocities used in the right hand side of the above
equations are readily available from Table 2. This procedure yields
Po ¼ �4loAr�2 cos 2hþ foðhÞ and Po ¼ �4loAr�2 cos 2hþ goðrÞ,
respectively, where A ¼ Umaxa=2. Equating the two expressions
results in foðhÞ ¼ goðrÞ ¼ Po, and Po ¼ �4loAr�2 cos 2hþPo, where
Po is a constant. A similar procedure yields the pressure in the fluid
cylinder, Pi ¼ �12liHr2 cos 2hþPi, where H ¼ Umax=2a3. Constants
Po and Pi can be determined by balancing the constant terms in
both sides of Eq. (43). Notice that P is the modified pressure. The
hydrodynamic pressure, however, can be easily found using the
above expressions and Eq. 5, 6, 15 and 16. Here, we are interested
in the terms that vary along the interface. The pressure jump across
the interface considering h-dependent terms is, therefore,

½½P�� ¼ 2Umaxð3li � loÞ
a

cos 2h; ð46Þ

and the jump in the normal electric stresses are given by Eq. (28).
Eqs. (41) and (46) are combined using ½½rh

rr �� ¼ ½½sh
rr �� � ½½P�� to find

the jump in the total normal hydrodynamic traction plus the jump
in the electrostriction force at the interface
f h
sntotal

h ih i
¼ rh

rr

� �� �
¼ �oE2

1ðR� SÞ
ðRþ 1Þ2

cos 2h: ð47Þ

Eqs. (28) and (47) suggest that the cylinder radius should vary lin-
early with cos 2h. Here, we consider r ¼ að1þD cos 2hÞ, where D is
the Taylor deformation defined as D ¼ ðymax � xmaxÞ=ðymax þ xmaxÞ,
and ymax and xmax are the end-to-end length of the cylinder cross
section in the direction of electric field and the maximum breadth
in the traverse direction, respectively. For a curve with a polar equa-
tion of the form r ¼ f ðhÞ, the curvature is j ¼ ðr2 þ 2r02 � rr00Þ=
ðr2 þ r02Þ

3=2
, where prime denotes derivation with respect to h. This

results in j ¼ ð1þ 6D cos 2hÞ=½að1þ 2D cos 2hÞ3=2� for our case.
Simplifying the numerator and the denominator using Taylor series
expansion yields j ¼ ð1=aÞð1þ 3D cos 2hÞ. Replacing cos 2h with
ð2 cos2 h� 1Þ in Eq. (43) and equating the coefficients of cos2 h in
both sides yield

D ¼ Cael

3
U

ð1þ RÞ2
ð48Þ

where

U ¼ R2 þ Rþ 1� 3S; ð49Þ

is the characteristic function that determines the sense of interface
deformation and Cael ¼ lous=c is the capillary number defined ear-
lier. Notice that Since Eq. (43) should be valid at any point at the
interface, the constant terms on both sides of the equation are bal-
anced and do not influence Eq. (48).

Since Cael � E2
1, Eq. (48) suggests that the interface deformation

scales as E2
1 with the electric field. This has been verified for fluid

drops (see, for example, Feng and Scott, 1996). Furthermore, Eq.
(48) shows how the sense of interface deformation depends on
U; for U ¼ 0;D ¼ 0 and the interface remains circular, for U > 0;
D > 0 and the interface will be prolate, and for U < 0;D < 0 and
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Fig. 10. Variation of dimensionless vorticities with the nondimensional radial distance from the centers of the fluid cylinder (ours and Rhodes et al.) and the drop (Taylor).
The left and the right frame corresponds to the ambient and the inner flow, respectively.

1062 M.N. Reddy, A. Esmaeeli / International Journal of Multiphase Flow 35 (2009) 1051–1065
the interface will be oblate. The corresponding expressions for D

and U for axisymmetric solution are given by Eqs. (A-17) and (A-
18). For the axisymmetric drop, the deformation is a weak function
of the ratio of fluid viscosities; surprisingly however, in our solution
the deformation does not depend on fluids viscosities as the jump in
the total normal hydrodynamic stress is independent of the fluid
viscosities. It is insightful to examine the deformation for a few lim-
iting cases. For perfect dielectric fluids, R ¼ S and U > 0. Therefore,
the interface will always be prolate. For a perfectly conducting fluid
cylinder in a perfect dielectric, R	 1; S < 1, and D ¼ Cael=3 > 0.
Again, the interface will always be prolate. Fig. 11 depicts the equi-
librium shape of the interface for the fluid systems shown in Figs. 6
and 7, respectively. Here, the surface tension was reduced to
c ¼ 1:45� 10�4 N/m to increase the interface deformation. For
these systems, D ¼ �0:0604 and 0.0468, respectively. In terms of
the aspect ratio, v ¼ ymax=xmax ¼ ð1þDÞ=ð1�DÞ, v ¼ 0:8861 and
1.0982, respectively. The deformation may be small even for
Cael ¼ Oð1Þ since D depends on both Cael and U.

To find out the sense of interface deformation in Rhodes et al.
(1989) solution, we need to examine their radial velocity at the
interface. Here, a local positive radial velocity implies an interface
that moves outward in the normal direction, therefore, it represent
a local expansion of the interface. Similarly, a local negative radial
velocity implies a local contraction of the interface. A zero radial
velocity, on the other hand, corresponds to a stationary interface
and, therefore, implies no interface deformation. The radial veloc-
ity at the interface is found to be uro ða; hÞ ¼ �2aðAR þ BRÞ cos 2h
from Table 3 and substitution for AR and BR from Eq. (37) yield

uroða; hÞ ¼ uri
ða; hÞ ¼ 4

3
aFRUR cos 2h:
1.2 2 3 3.8
1.2

2

3

3.8

1

3

Fig. 11. Effect of relative magnitude of R and S on the interface deformation. The dashed-l
shown in Fig. 6 where R < S and the second frame corresponds to system shown in Fig. 7
the first (correspondingly the second) system.
Here, UR is Rhodes et al. (1989) characteristic function which
turns out to be the same as ours; i.e., UR ¼ U. As FR is always po-
sitive, the sense of interface deformation will depend on UR. As
such, the Rhodes et al. (1989) solution predicts the same sense
of interface deformation as that of our solution. The amount of
deformation, however, cannot be found from their solution. To
determine the interface deformation quantitatively using their
solution, we modified equation (iii)b allowing for small interface
deformation and accounting for the restoring force of surface
tension

�ðPo � PiÞ þ se
rro
� se

rri

� �
þ sh

rro
� sh

rri

� �
¼ cj:

The above boundary condition was used along with boundary con-
ditions (ii), (iiia), and (iv) in the streamfunction solution,
wo ¼ Am

R a4r�2 þ Bm
R a2

� 	
sin 2h and wi ¼ Cm

R r2 þ Dm
R a�2r4

� 	
sin 2h, to

determine the unknown coefficients. Notice that as in our own solu-
tion, to use the above boundary condition we consider the interface
equation as r ¼ að1þDR cos 2hÞ, where DR is the deformation, line-
arize j in terms of DR, write all the h-dependent terms in terms of
cos2 h, and equate the coefficients of cos2 h terms in both sides of the
final equation. The solution of the resulting algebraic equations
yields the new constants:

Am
R ¼ AR �

1
3

C0; Bm
R ¼ BR þ C0;

Cm
R ¼ CR þ C0; Dm

R ¼ DR �
1
3

C0; ð50Þ

C0 ¼
3DRc

4aðli þ loÞ
:

1.2 2 3 3.8
.2

2

3

.8

ine represents the initial circular interface. The first frame corresponds to the system
where R > S. The interface deforms to an oblate (correspondingly prolate) shape for
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The new radial velocity at the interface is found to be
um

ro
ða; hÞ ¼ �2a Am

R þ Bm
R

� 	
cos 2h which can be simplified by substi-

tuting for Am
R and Bm

R from Eq. (50)

um
ro
ða; hÞ ¼ um

ri
ða; hÞ ¼ 4

3
aðUFR � C0Þ cos 2h:

Care must be taken to interpret the above equation. In the original
Rhodes et al. (1989) solution, C0 ¼ 0 and the interface will be unde-
formed if U ¼ 0. Under the current modification, however,
ð4=3ÞaC0 cos 2h represents the local counter displacement that is
needed to bring the interface back to its circular shape. Therefore,
um

ro
ða; hÞ ¼ 0 serves as the equation to determine the deformation

DR. Setting UFR � C0 ¼ 0, yields DR ¼ ð1=3ÞCaelU=ð1þ RÞ2 which is
the same as Eq. (48). In other words, the degree of interface defor-
mation using our method and Rhodes et al. (1989) method is the
same.
S=εi/εo

Fig. 12. Circulation–deformation map. In Region (I), the direction of the outer flow
is from the poles to the equator, two tandem jets/drops deform to oblate shapes,
and attract each other. In Region (II), the direction of the outer flow is from the poles
to the equator, two tandem jets/drops deform to prolate shapes and attract each
other. In Region (III), the direction of the outer flow is from the equator to the poles,
two tandem jets/drops deform to prolate shapes and repel each other. The curve
UT ¼ 0 for the axisymmetric solution ðli ¼ loÞ is also added to the figure and is
shown with dashed lines.
7. Circulation–deformation map

Although the results presented here so far pertains to the
behavior of a single isolated jet or a two-dimensional drop, it is
possible to stipulate about the modes of interactions of two tan-
dem/side-by-side jets/drops in dilute limit by inspection of the
streamlines of the ambient fluid around a single isolated interface.
The information can be used to construct a circulation–deforma-
tion map in S–R coordinates (Baygents et al., 1998). First, we note
that U ¼ 0 represents a curve in the S–R coordinate that divides the
domain into two regions of oblate and prolate deformation. Sec-
ond, we examine the sense of flow circulation in the ambient fluid
around the interface. For instance, consider the first frame of Fig. 6.
Here, R < S and the flow is from the poles to the equator. If another
cylinder at a sufficiently large distance is placed in tandem beneath
this cylinder, the directions of the streamlines for the second cylin-
der will be the same as those of the first one. This suggests that the
cylinders will be attracted toward each other as the outer flow
tends to move the top cylinder downward while moving the lower
one upward. A similar argument for the simulation in Fig. 7, where
R > S, suggests that the cylinders will repel each other. For side-by-
side cylinders, the directions of the outer flow at the equator sug-
gest that for R < S the cylinders will repel each other while the
opposite is true when R > S. For R ¼ S, the cylinders neither repel
nor attract each other due to the fluid flow as there is no flow.
Therefore, line R ¼ S delineates the regions in the S–R domain
where the fluid cylinders/drops attract or repel each other. When
R ¼ S line and U ¼ 0 curve are plotted together in the S–R coordi-
nate, the result is a map of the expected shape (oblate/prolate)
and migration response (attractive/repulsive). Fig. 12 shows the
deformation–circulation map and the corresponding regions, iden-
tified as region I, II, and III, respectively. In addition, the Taylor’s
U ¼ 0 curve for li ¼ lo is also added to the figure. In region (I),
U < 0; D < 0, and R < S. This region corresponds to oblate cylin-
ders/drops that attract each other. In region (II), U > 0; D > 0,
and R < S. This region corresponds to prolate cylinders/drops that
attract each other. Finally, in region (III), U > 0; D > 0, and R > S,
and the region corresponds to prolate cylinders/drops that repel
each other.
8. Conclusion

The effect of a uniform electric field on the steady-state behav-
ior of a fluid cylinder surrounded by another fluid was investigated.
The governing electrohydrodynamic equations were solved for
Newtonian and immiscible fluids in the framework of leaky-dielec-
tric theory and for creeping flow regimes. The electrical and hydro-
dynamic stresses acting on the interface was computed and their
interplay on the sense of flow circulation and interface deforma-
tion was analyzed. It was shown that the relative magnitude of
the electric conductivity and permittivity ratios, R ¼ ri=ro and
S ¼ �i=�o, is the key parameter in determining the sense of fluid cir-
culation and interface deformation. The flow field consisted of four
vortical regions inside the cylinder that were matched with open
circulation regions in the ambient fluid. The coordinates of the
cores of the inner vortical regions depended only on the cylinder
radius. It was shown that for a perfect dielectric or an infinitely
conducting fluid cylinder, surrounded by another perfect dielectric
fluid, the jump in electric shear stresses are always zero, but for en-
tirely different reasons. In the former, the electric free charge at the
interface is zero while in the latter, the charge exists but the tan-
gential component of the electric field vanishes at the interface.
For both cases, however, the fluid flow would cease to exist at stea-
dy state and the interface would always deform to a prolate shape.
A detailed comparison was made between the fluid flow in the
present study and those of Taylor (1966) and Rhodes et al.
(1989) and it was shown that the results were in qualitative agree-
ment with the Taylor’s results but there were distinctly different
from those of Rhodes et al. (1989) because of the difference in
the interface kinematic boundary condition. The Rhodes et al.
(1989) solution was modified to account for small interface defor-
mation and restoring force of surface tension, and it was shown
that the interface deformation is the same as that predicted by
the current study.
Appendix Summary of Taylor’s solution

In what follows, we give a summary of Taylor (1966) analytical
solution concerning the behavior of a three-dimensional drop in an
electric field. Briefly, using spherical coordinates ðr; h;/Þ and
assuming axisymmetricity, @=@/ ¼ 0, the governing equation of
the electric potential is r2/ ¼ 0, where r2 ¼ ð1=r2Þ½ð@=@rÞ
ðr2@=@rÞ� þ ð1=r2 sin hÞ½ð@=@hÞðsin h@=@hÞ�. Solution of this equation
subject to the pertinent boundary conditions (discussed in this
study) results in the electric potential inside
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/i ¼
3E1

2þ R
r cos h; ðA-1Þ

and outside of the drop

/o ¼ E1 r � R� 1
Rþ 2

a3

r2

� �� �
cos h: ðA-2Þ

The electric field is found using E ¼ �r/, where
r ¼ ð@=@rÞer þ ½ð1=rÞð@=@hÞ�eh. This results in

Ei ¼ �
3E1

2þ R
cos her þ

3E1
2þ R

sin heh ðA-3Þ

and

Eo ¼ �E1 1þ 2ðR� 1Þ
Rþ 2

a3

r3

� �
cos her þ E1 1� R� 1

Rþ 2
a3

r3

� �
sin heh;

ðA-4Þ

Having found the electric potential and the electric field, the free
charge per unit area at the interface is found, using qs ¼ �oEro � �iEri

,

qs ¼
3E1�oðS� RÞ

2þ R
cos h: ðA-5Þ

The electric stresses are found, using se
rr ¼ ð�=2Þ E2

r � E2
h

� �
and

se
rh ¼ �ErEh. This results in

se
rro
¼ 1

2
�oE2

1 � 1þ ðR� 1Þ2

ðRþ 2Þ2
a6

r6 �
2ðR� 1Þ
ðRþ 2Þ

a3

r3

" #(

þ 2þ 5ðR� 1Þ2

ðRþ 2Þ2
a6

r6 þ
2ðR� 1Þ
ðRþ 2Þ

a3

r3

" #
cos2 h

)
; ðA-6Þ

se
rho
¼ �1

2
�oE2

1 1þ ðR� 1Þ
ðRþ 2Þ

a3

r3 �
2ðR� 1Þ2

ðRþ 2Þ2
a6

r6

" #
sin 2h; ðA-7Þ

se
rri
¼ 9�iE

2
1

2ðRþ 2Þ2
cos 2h; ðA-8Þ

and

se
rhi
¼ � 9�iE

2
1

2ðRþ 2Þ2
sin 2h: ðA-9Þ

The jump in the traction forces at the interface fe
s

� �� �
¼ fe

so
� fe

si
, are

found using the above expressions

f e
sn

� �� �
¼ se

rr

� �� �
¼ 9�oE2

1

2ðRþ 2Þ2
½S� 1þ ðR2 þ 1� 2SÞ cos2 h�; ðA-10Þ

f e
st

� �� �
¼ se

rh

� �� �
¼ 9�oE2

1

2ðRþ 2Þ2
ðS� RÞ sin 2h: ðA-11Þ

To find the velocity field, an equation for the streamfunction is
found; i.e., E4w ¼ 0, where E4 ¼ E2ðE2Þ, and E2 ¼ ð@2=@r2Þ þ ðsin h=
r2Þ½@=@hðð1= sin hÞ@=@hÞ�. The velocities are related to the stream-
function through ur ¼ ð1=r2 sin hÞð@w=@hÞ and uh ¼ �ð1=r sin hÞ
ð@w=@rÞ. The suggested solution for the streamfunction equation is
of the form w ¼ rn sin2 h cos h. Considering a solution of the form
wo ¼ ðAT a4r�2 þ BT a2Þ sin2 h cos h and wi ¼ ðCT a�1r3 þ DT a�3r5Þ sin2 h
cos h, and applications of the pertinent boundary conditions results
in AT ¼ �BT ¼ CT ¼ �DT , where

AT ¼
9a�oE2

1
loð1þ gÞ

S� R

10ð2þ RÞ2
: ðA-12Þ

From the solution of uho given in Table 4, it is seen that the maxi-
mum velocity is UmaxT ¼ AT which takes place at the drop surface
and at angles ðh ¼ 
p=4;
3p=4Þ. The velocities in terms of UmaxT

can be expressed as
uro

UmaxT

¼ a
r

� �2
� a

r

� �4
� �

ð1�3cos2 hÞ; uho

UmaxT

¼ a
r

� �4
sin2h

uri

UmaxT

¼ r
a

� �3
� r

a

� �� �
ð1�3cos2 hÞ; uhi

UmaxT

¼1
2

5
r
a

� �3
�3

r
a

� �� �
sin2h

ðA-13Þ

The vorticity is found, using x � x/ ¼ ð1=rÞ½@=@rðruhÞ� � ð1=rÞ
ð@ur=@hÞ,

xo

UmaxT =a
¼ �3

a
r

� �3
sin 2h;

xi

UmaxT =a
¼ 7

r
a

� �2
sin 2h: ðA-14Þ

The viscous stresses at the interface are found from
sh

rh¼l½r@ðuh=rÞ=@rþð1=rÞð@ur=@hÞ�;sh
rr¼2lð@ur=@rÞ, and rh

rr ¼ srr � p
and are given in Table 4, where we have accounted for the correc-
tion made by Melcher and Taylor (1969) to Taylor’s (1966)
typographical error in the pressure coefficients. The jump in hydro-
dynamic stresses are, therefore,

rh
rr

� �� �
¼ 9�oE2

1ðR� SÞ
10ðRþ 2Þ2

2þ 3g
1þ g

ð1� 3 cos2 hÞ; ðA-15Þ

sh
rh

� �� �
¼ 9�oE2

1ðR� SÞ
2ðRþ 2Þ2

sin 2h: ðA-16Þ

Notice that Eq. (A-16) is opposite in sign but equal to Eq. (A-11) as is
required by the shear stress balance.

The drop deformation is found using Eq. (43) and considering
r ¼ a½1þ ð2DT=3Þð3 cos2 h� 1Þ� (Vizika and Saville, 1992) which
results in

DT ¼
9Cael

16
UT

ð2þ RÞ2
; ðA-17Þ

where

UT ¼ R2 þ 1� 2Sþ 3
5
ðR� SÞ2þ 3g

1þ g
; ðA-18Þ

is the characteristic function that determines the sense of drop
deformation.
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